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Table 3 (cont.) 

Z a b c e(%) 
Ac 89 1"0137 0"5648 1"5024 0"3088 
Th 90 1.0110 0-5655 1-4917 0.3069 
Pa 91 1.0135 0.5479 1.5279 0-3102 
U 92 1.0184 0.5884 1.4479 0.3423 
Np 93 1.0161 0-5407 1.5358 0.2950 
Pu 94 1.0150 0-4812 1.6715 0.3230 
Am 95 1-0162 0-4605 1-7288 0-3042 

used with universal parameters,  independently of  the 
atomic species. The accurate values of Cromer (calcu- 
lated from H F - S C F  wave functions, based on the 
complete W - H  theory) can be approximated by the 
analogue expression (5) with the individual parameters 
tabulated in Table 3. Neither of  the fits depends on the 
atomic form factors. 

As to the mean errors of  the latter fits, they are of 
the same order of  magnitude as those of the squares 
of  the published analytic fits for the form factors. Thus 
both the coherent and the incoherent terms contribute 
equally to the error of  the total scattered intensities. 
Weighting of the deviations by s was meant  to enhance 
the accuracy of  the fit with growing s in order to keep 
the error of  the approximated total scattered intensities 
on a standard level. 

The limiting value of  the analytic expression for s = 0 
is 1 - a .  It is seen from Table 3 that the parameter  a is 
by 0.5-6 % over unity. Al though fixing it as -= 1 would 
result in zero for Ii,c(0), the remaining two parameters 
would yield a poorer fit. From Table 2, it is seen that 
the fit is not very good below s=0 .1 .  This inaccuracy 
is not significant for total scattered X-ray intensities, 
the contribution of the incoherent part being negligible 
in this range. However, the same cannot be stated of 
electron scattering, and therefore the use of  our for- 
mula  for deriving differential inelastic electron scatter- 

ing factors in this range would lead to insufficient re- 
sults. 

The author wishes to thank Professor Dr S. Lengyel 
and Mr F. Hajdu for the discussion of  the manuscript  
and Mrs M. KovAcs for her technical assistance. Cal- 
culations have been performed on the C D C  3300 com- 
puter of  the Comput ing Centre of the Hungar ian  Aca- 
demy of Sciences, Budapest. 
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In layered lattices the layers tend to stratify and the stratified layer domains often exhibit preferred 
orientation in bulk samples. Using the Laplace and Hankel transform techniques, equations have been 
developed for the profiles of the two-dimensional (hk) reflections from defective layered lattices in 
different orientation modes. Two different approaches have been used in the derivation, the inter-atomic 
distance sum method and the lattice sum method, and the results have been compared. 

Introduction 

In explaining the linewidths of diffraction patterns, the 
concept of  coherently scattering crystallites as domains  

has been found to be convenient. The particle size con- 
cept has been well entrenched in spite of  recognition 
(Warren, 1959) that the materials studied in most in- 
stances are not fragmented into small  separate par- 
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ticles of sizes indicated by the linewidths. The treat- 
ment presented below is based on the theory of defec- 
tive lattices (Ergun, 1970a). According to the theory, 
diffusely scattering substances are essentially highly 
defective lattices rather than made up of small in- 
coherently scattering crystallites. Fig. 1 shows a model 
of defective lattices using a raft of bubbles (Bragg & 
Nye, 1947). It is seen that the concept of a defective 
lattice is amenable to illustration, and, in such in- 
stances, it is physically more realistic and convenient 
to consider interdefect distances rather than domain 
sizes. 

The case of layered lattices requires special attention 
(Warren, 1941) in that they tend to stratify and show 
preferred orientation. The profiles of the observed in- 
tensities depend upon the type as well as the degree of 
preferred orientation (Bacon, 1956; Ruland, 1967). In 
this paper we will confine our attention to the effects 
of the type of orientation. The effects of the degree 
of orientation will be given elsewhere (Ergun, in 
preparation). 

Types of preferred orientation 

The profiles of crystalline reflections are not signifi- 
cantly affected by the size of domains if the mean inter- 
defect distance is less by a factor of five or more than 
the sizes of domains. We may therefore consider a 
sample to be made up of large defective domains. Their 
sizes and shapes are effectively studied by small-angle 
X-ray scattering or by electron microscope observa- 
tions. In the case of layered structures these domains 
are characterized by a vector normal to the layers, i.e. 
along the direction of stratification. Three cases of 
preferred orientation are observed experimentally. 

Case I. The normals of  the domains are parallel 
Samples of pyrolytic carbons and some polymers, 

e.g. polyethylene, are examples. They are best studied 
by placing the sample so that the diffraction vector 
makes a specific angle with the layer normals. If the 
diffraction vector is parallel, only the 00l reflections 
are observed. If it is perpendicular, only the hkO re- 
flections are observed. There is a specific angle for 
each of the hkl reflections, if they exist. 

Case II. Normals of the domains lie in a circle 
When drawn from a common point, the end points 

of the unit vectors describing the normals of the layer 
domains would lie on a circle on which the density of 
the end points would be constant. Fibers are examples 
of such a case. They are conveniently studied by placing 
a parallel bundle of fibers in such a manner that the 
diffraction vector makes a specific angle, ~, with the 
axes of the fibers. The shapes and the intensities of the 
hkO reflections would depend upon u/(Ergun, 1970b). 
When ~/=0, only the hkO reflections are observed. In 
this situation the profiles of the hkO reflections are 
identical with those observed in Case I. 

Case III. Random orientation 
This is the case for the isotropic samples of layered 

structures. 
In each of the three cases cited, the absence of the 

hkl reflections would indicate that the layers are ran- 
dom in rotation with respect to their normals and ran- 
dom in translation. The randomness is generally the 
rule rather than the exception in the case of carbon. 
Hence they are each cited as a prime example of ran- 
dom layered lattices. 

The interference function 

The interference function due to an interatomic dis- 
tance vector 1 is given by exp (ih. 1) in which h is the 
diffraction vector. The magnitude of h is given by h = 
2n sin 0/2, 20 being the scattering angle and 2 the wave- 
length. We are interested in developing analytical ex- 
pressions for the average value, I(h, l), of exp (ih. 1) 
for the different types of preferred orientations de- 
scribed above. 

We may conveniently start with the case of circular 
rotation of the normals of layer domains in which the 
layers are random in rotation about their normals and 
random in translation. This situation is analogous to 
considering a layer parallel to an axis, rotating the 
layer about the axis and about its normal and trans- 
lating along the axis. Let X be the axis, X Y  be the plane 
of the layer, and Z normal to the layer. Let ~, be the 
angle that the diffraction vector h makes with the X 
axis, and fl the angle that its projection on the YZ 
plane makes with the Z axis. The product of h with the 
interatomic distance i is given by 

h .  l=h l (cos  V cos c~+sin V sinflsin c 0 (1) 

where a is the angle between the X axis and I. A cylin- 
drical rotation about the X axis requires that fl varies 
from 0 to 2n and random rotation of the layers re- 
quires that the angle 0c varies from 0 to 2n each with 
equal probability. The average value, I(h, l), of 
exp (ih. l) while keeping V constant is given by 

1 exp (ih. l)dadfl I(h, 1)= --~ o 

V (hi sin 2 =J° (hl c°s2-2- ) J° 2 )  (2a) 

where J0 is the Bessel function of the first kind and of 
zero order. 

When v = O  
/(h, l) = Jo(h/). (2b) 

When ~ = n / 2  
I(h, l)= J~(hl/2) . (2c) 

If the diffraction vectors were randomly oriented, the 
number of vectors making an angle between ~ and 
~ + d ~  with a pole would be proportional to sin V. 
I(h, l) would then take the form 
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Fig. 1. Illustration of a defective lattice using a raft of bubbles 
(Bragg & Nye, 1947). 
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en/2(hlcos2 (hl sin 2 10,0 ,0 
x sin vdv  =sin(hl)/hl (2d) 

which is the well-known Debye interference function. 
Equation (2b) may be directly obtained from 

I(h, l) = ~ 0 exp (ihl cos e)de = Jo(hl), 

and (2d) from 

S I(h, l) = ½ 0 exp (ihl cos ~) sin c~doc = sin (hl)/hl. 

The atomic radial distribution method 

For simplicity, consider a layered lattice containing 
one kind of atom and neglect the vibration and strain 
effects. The interference function, in atomic units, 
produced by a layer may be obtained from 

lo2rCrQ j (h )=  (r)l(h, r)dr . (3) 

where o(r) represents the average atomic density as a 
function of distance r from an atom. Thus 2rcrQ(r)dr 
gives the average number of atoms at a distance be- 
tween r and r + dr. 

Experimentally one obtains j(h) and wishes to 
evaluate 0(r) using equation (3). To accomplish this, 
it is essential to develop an analytical expression for 
I(h, r). Equations (2) furnish the desired analytical ex- 
pressions. Cases I and II would permit experimentally 
placing the wave vector in the plane and the resulting 
interference function is given by equation (2b). For 
Case III we obtain the Debye interference function. 
Substituting equations (2b) and (2d) into (3) we ob- 
tain, respectively, 

I~2rcr0 j(h) = (r)Jo(hr)dr (4b) 

i 
oo 

hi(h) = 2zc0(r) sin (hr)dr. (4d) 
0 

Equations (4b) and (4d) can be inverted using the 
Hankel and the Fourier inversion theorems respec- 
tively, and we obtain 

2rcrQ(r) = r Iohj(h)Jo(hr)dh . (5b) 

F 1 hi(h) sin (hr)dh. (5d) 2~rQ(r) = -~- 0 

Equation (5b) does not seem to have been used to 
date in structural analysis. Analysis of the structure 
from the intensity profiles obtained in the oriented 
state has tremendous advantages over those obtained 
in the random state (Ergun, 1970b). 

Interatomic distance sum method 

If we were to consider all of the interatomic distances, 
the interference function j(h) would take the form 

c~ 

j (h )=  ~ n(la)I(h, 4) (6) 
q=0 

where n(l) is the number of neighboring atoms at a 
distance l from any atom. The variables n and l cha- 
racterize the structure. Equations for n and l can be 
formulated for any lattice of infinite extent (Ergun, 
1970a, c). In a domain of finite extent or in defective 
lattices, n(l) is less than that which exists in a lattice 
of infinite extent. We may modify n(l) by a function 
g(l) properly chosen to account for both the shape 
and size effects. For very defective lattices g(I) is 
given by 

g(l) =exp ( - l /R)=exp ( -a l )  
a=l /R (7) 

where 2R is the mean interdefect distance, i.e. starting 
from any atom the probability of traversing a distance 
R irrespective of direction, without encountering a 
defect is 1/e. Substitution of equations (7) and (2) into 
(6) yields 

j (h )=  ~. exp (-alo)n(l~) 

x Jo (hl~ cos 2 ~ ) J0 (hl~sin2 ~ -) (8a) 

j(h) = ~. exp (-alq)n(l~)Jo(hl~) (8b) 

j (h )=  ~. exp (-alo)n(l~)j2(hlJ2) (8c) 

j (h )=  ~.. exp (-alo)n(lq) sin (hl~)/hl~. (8d) 

If 2R < 30 A,, equations (8) can effectively be used to 
calculate the intensity profiles using a computer. Cal- 
culated profiles using equations (8b-8d) are shown in 
Fig. 2. The results correspond to the two-dimensional 

1 0 . 0  

~: s.o 

z 

0.0 

I... 
I...,.... I I I I I 

(II) 

"... 

(10)" 

0.5 
5=251 N( B ) /x 

I l i l l l l l  t ( 3 0 )  - 

1.0 1.5 

Fig.2. Effect of orientation on the intensities of the hk reflec- 
tions. Circles correspond to random orientation [equation 
(8d) or (15d)], solid line corresponds to the parallel case 
[equation (8b) or (15b)] and the crosses correspond to the 
cylindrical orientations [equations (8c) or (15c)]. 
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graphitic lattice, with 2R=20 A and bond length 
1.42 A. 

Lattice sum method 

In principle, the lattice sum method involves the 
evaluation of 

I(h, r)= (exp [i(h-ho) • r]> 

where r is an inter-unit-cell distance vector and h0 is 
the reciprocal lattice vector defining the hkl reflection 
considered. The magnitude of ho is ho =2n/z, z being 
the spacing between the reflecting planes or lines. In 
employing this method, the intensity is expressed as 
a product of a unit-cell interference function, F 2, and 
the lattice interference function, G 2. The basic premise 
in deriving a valid analytical expression for the peak 
profile is that F 2 is more or less invariant in the region 
of h where G 2 gives rise to a peak. This is permissible 
if the number of unit cells in the structure is larger by 
a factor ten or more than the number of atoms in the 
unit cell. 

The vector ho is independent of the vector h and 
for the two-dimensional hk reflections h0 lies in the 
layer; we have, therefore, 

<exp [i(h-h0). r])=<exp (ih0. r)) (exp (ih. r)) .  

If the layers are random in rotation about their nor- 
mals and random in translation we have 

(exp (ih0. r)> = Jo(hor). 

The average value of exp (ih. r) depends upon the 
type of preferred orientation and is essentially given 
by equations (2). Designating them by I(h, r), the inter- 
ference function takes the form 

o o  

j (h)= ~ g(r~)Jo(hor~)I(h, ra). (9) 

For the defective lattice g(r) is given by exp ( -ar )  
(Ergun, 1970a). Since the intensity is appreciable for 
small values of h-ho, the necessary summation in 
equation (9) can be replaced by an integral over r and 
we may write 

S j (h)= exp (-ar)2rcrOJo(hor)I(h,r)dr. (10) 
0 

For the two-dimensional hk reflections 0 is defined from 

o = rnF2/4A (11) 

m being the multiplicity of the reflections studied, F 2, 
the structure factor and A is the area of the two-dimen- 
sional unit cell. Substituting equations (2) into (10) we 
obtain 

l 
o o  

j (h)= 2z~O r exp (-ar)Jo(hor) 
0 

X Jo(hrcos2-~)3"0 (hr sin2-~)dr (12a) 

I 
o o  

j (h)= 2nO r exp (-ar)Jo(hor)Jo(hr)dr 12b) 
0 

j(h) =2zrQ Io r exp (-ar)Jo(hor)j2(hr/2)dr (12c) 

S j(hr)=(2~o/h) exp (-ar)Jo(hor) sin (hr)dr. (12d) 
0 

Equations (12) are integrated using Laplace and Hankel 
transforms. Equations (12a) and (12c) involve the pro- 
duct of three Bessel functions and can be reduced to 
the product of two Bessel functions using the relation 
(Heaviside, 1950). 

_ 2 (b Jo(ux)xdx 

1/ Y-c-X x 1 / x ' - a  2 

Equations (12a) and (12c) take the forms, respectively 

j(h) =40 r exp (-ar)Jo(hor)Jo(hr) 
0 

x (1 - sin 2 N sin 2 oOU2drdo~, (13a) 

S?S; j(h) =4Q r exp (-ar)Jo(hor)Jo(hr sin 00drd0c. 

(13c) 

Equation (12b) involves the integral (Luke, 1962) 

I? x exp (-ax)Jo(bx)Jo(cx)dx 

2aE(z) 1 
= n[/a2+(b+c)2 aZ+(b_c) 2 (14) 

where E is the complete elliptical integral of the second 
kind and z is defined from 

zZ=4bc/[a z + (b + c)2]. (14a) 

Equation (12d) is readily integrable (Erdelyi, 1954). 
Using equations (13) and (14) and substituting 4Q= 
mF2/A we obtain 

mF z E(z)a ~,q2 do: 

j ( h ) -  ~ h0 ~,j0 (hi/1 - s i n  z ~u sin 2 ~ - h 0 )  2 +a 2 

mF2aE(z) 
j (h)= A[(h + ho) 2 +a2]X/2[(h-ho) 2 +a 2] 

(15a) 

(15b) 

mF 2 E(v) 
j (h)= A 2 l/a-ho ~ F(x) (15c) 

mF 2 ~z 
j (h)= A 4hl/-~ F(y).  (15d) 

Equations (15a-c) correspond to (12a-c) and to 
(8a-c) respectively. 
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In equations (15), 

z2=4hho/[a 2 +(h + h0) 2] 
v 2 = h2/(a 2 + h 2) 

F ( p ) =  ( V ~  + I +P ) 1/2 
p2+ 1 (16) 

and x is defined by 

x = (h 2 - h2o + a2)/2aho (16c) 

and y is defined by 

y = (h 2 - h~ - a2)/2ah. (l 6d) 

Equation (15a) is integrable; however, the resulting 
expression is cumbersome. Using a computer, the inten- 
sity profile can easily be calculated. 

Equation (15b) can further be simplified. Generally 
R > 5 and h0-¢ 0, and E(z)  _~ 1.0 and (h + ho) 2 + a 2 can 
be replaced by 4h2o because the intensity only becomes 
significant when h - +  h0. With these simplifications it 
takes the form 

m F  2 a 
j ( h ) -  2Aho (h-h0)  2 + a  2" (17b) 

Equation (17b) has the Cauchy form. The peak height 
is given by 

j (ho)=mF2R/2Aho . 

The intensity is one-half the maximum when 

h =h0 _+ 1 /R ,  

and the line width at half peak intensity is given by 

Ah = 2 / R  . 

A simple approach to derive similar equations is as 
follows. Since we are interested in obtaining the inten- 
sity profile of a given hk reflection corresponding to a 
spacing z, we are concerned with diffracting lines in- 
stead of diffracting planes. We may consider an ele- 
ment of area z (=  2zc/h0) in extent along h0 and infinite 
in extent perpendicular to h0 and use it as a repeating 
unit. From the defective lattice theory we obtain for 
the 00 reflections 

- -  exp ( -  x /R)oz  exp (ihx cos ~)d~dx 
*0 0 

= 2rco/hol/-~ + a 2. 

The interference function of the diffracting lines is 
given by (Ergun, 1970) 

1 ÷ 2 ~ exp ( - q z / R )  cos (qhz) 
0 

~_ (ho/rcR)/[a 2 + (h - h012]. 

The layer interference function is simply the product 
of the two expressions obtained, i.e. 

j (h) = (2o~ a/~h 2 + a2)/[a 2 + (h - h0)2]. 

With 4Q=mF2/A,  the above equation and equation 
(15b) substantially yield the same profile. 

In deriving equation (15c), (h sin ~+h0)Z+a 2 was re- 
placed by 4h g because the main contribution from the 
Cauchy function comes as h ~ h0 and sin e ~ 1. The 
effect of this simplification was also found to be 
negligible by a numerical comparison of equation (15c) 
with (8c) as shown at the top of Fig. 3. The crosses 
correspond to the results of equation (15c). Equation 
(15d) involves no approximation. It has been checked 
numerically with results obtained from (8d); the com- 
parison is shown in Fig. 3 (middle curve). 

Equations (15c) and (15d) are governed by the func- 
tion F defined by equation (16). The function has a 
maximum at p = l / F 3 ,  and Fm.~x~l-14. The shift in 
peak position hmax-h0 is given by 

hma  x - h 0 = 1 / R  1/3. 

Although equations (15c) and (15d) appear to be 
similar, they differ, especially on the high angle side, 
because of the differences in x and y and in the co- 
efficients of F(x)  and F(y). 

The 00 reflections 

These reflections are prominent when h - +  0 and are 
important in the analysis of small angle X-ray scat- 
tering. They are also important in the analysis of the 
00l reflections from the layered structures since the 
latter are produced by the modulation of the 00 re- 

2.0 

1.0 

0.0 

z~ 3,0 

~: 1.S 

~ 0.0 

-- 10.0 

5.0 

0.0 

I 
0.5 1.0 1.5 

5=251N(B)/X 

Fig. 3. Comparison of profiles calculated using interatomic 
sum method (solid line) and lattice sum method (crosses). 
The figure at the bottom corresponds to equations (8b) and 
(15b) (parallel case), the figure at the middle to equations 
(8d) and (15d) (random case), and the figure at the top to 
(8c) and (15c) (cylindrical case). From all of the equations, 
thc 00 rcflcctions havc been excluded and in computing the 
profiles using the lattice sum technique the influence of 10 
consecutive reflections has been included. 



SABRI E R G U N  A N D  M A R T I N  B E R M A N  17 

flections. For the 00 reflections mF2/A =4Q and ho = 0; 
from equations (15b-d) we obtain, for the 00 reflections 

j (h)  = 2noa/(h 2 + a2) 3/2 parallel case (18b) 

.j (h) = 4QE(v)/a(h 2 + a2) 1/2 cylindrical case (18c) 

j(h)=2~zQ/(h 2 + a  2) random case (18d) 

where v is now defined by v = h/I/(h2 + a2). 
At h=0 ,  all of the above equations become iden- 

tical, viz. 27r~oR 2. At h>> 1/R, the above equations take 
the forms 

j (h)  = 2rco/Rh 3 parallel case (19b) 

j (h)  = 4zcE(v)R/h cylindrical case (19c) 

j (h) ~- 2gQ/h 2 random case. (19d) 

From an inspection of equations (19) we note very im- 
portant differences in the 00 reflections. In the parallel 
case it diminishes with 1/Rh a. Hence they essentially 
have no influence on the other reflections. For the 
random case j (h)  is more or less independent of R and 
decreases with 1/h 2. For the cylindrical case at large 
values of h, E(v) ~ 1, and the 00 reflections are propor- 
tional to R and diminish slowly, i.e. with 1/h. 

It may be pointed out that the intensities of the 00 
reflections follow more simply from 

f 
oo 

j (h )=  2~zrQ exp ( -a r ) Jo (hr )dr  
0 

= 2~zQa/(h 2 + a2) 3/2 (20b) 

S j (h )=  2gro exp ( -ar ) j2 (hr /2 )dr  
0 

=4QE(v) /a l /~  + a  2 (20c) 

j (h)  = 2~zrQ exp ( - a t )  sin (hr)/hrdr 
0 

=2rcQ/(h 2+a2). (20d) 

For the general case we have 

f j (h)  = 2zcr~o exp ( -  ar)Jo hr cos 2 
0 

=4~aE(u)/[(h2cos z ~ + a2) h 2 ~ ]  (20a) 

where 
u = h  sin 9,/V-~+a z 

and E is the complete elliptical function of the second 
kind. 

In using equation (17b) i.e. the parallel case, the 
00 reflections need not be considered and neighboring 
peaks have very little influence on any peak. These ob- 
servations follow from an inspection of Figs. 2 and 3. 

Comparison of equations (8d) and (15d) is shown 
in Fig. 3, middle. In the illustration, 2~zQ/(h2q -a  2) has 
been subtracted from equation (8d) (solid line) and in 
the calculation of the curve shown by crosses, the 00 
reflections have been excluded and the influence of ten 
consecutive peaks (3 not shown) is included. The iden- 
tity is obvious. It is also clear that in calculating the 
profile in the vicinity of any peak, contributions of all 
of the peaks to the left need be included; three peaks 
to the right appear to be sufficient. 

Comparison of equations (8c) and (15c) is also 
shown in Fig. 3 top. In the illustration 4QE(v)R/ 
V(hZ+ 1/R 2) has been subtracted from equation (l lc),  
solid line, and in the calculation of the crosses, the 00 
reflections have been omitted and 10 consecutive peaks 
have been included (3 not shown). Although E(v) ~ - 
1.005 at h___2 for R=10,  the simplification E ( v ) _ l  
leads to serious error at the low-angle side of the 100 
reflections. 
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